

Wireless Sensor - MEMs Accelerometer Basics

Meet the Speaker

Steven Hudson

Director, Professional Services (2018-Present)

- Remote Vibration Analysis/Reporting
- Reciprocating Compressor Analysis
- Startup / Field Services

Background:

- 35 years in Predictive Maintenance
- ISO Cat IV Vibration Analyst
- Naval Nuclear Power (Submarines)

Joined Symphony Industrial in 2010

Roles:

- Chief Analyst
- Strategic Account Manager / Technical Sales
- Operations

Wireless Sensor - MEMs Accelerometer Basics This topic will discuss the use and utility of MEM's sensors for vibration analysis. It will compare attributes of legacy Piezo electric sensors vs MEM's including how each works and strengths & weakness of each. We discuss how we can leverage the MEM's sensor in a wireless sensor package and what results we see in using MEM's for impact detection.

Accelerometers

Reliability

4

5

Selence mass

Land-une

PIEZOELECTRIC ACCEL

Cover (

OF motentring

Preioadring

Preprinting of vehicles

COST **HIGH FREQUENCY**

LOW FREQUENCY

AMPLITUDE RANGE

FLEXIBLE PLATFORM

SIMPLE PLATFORM

MEMS ACCEL

 \checkmark

Legacy Azima Systems use Piezo-Electric Sensors

Piezoelectricity:

The ability of a crystalline material to develop electric charge in response to the applied mechanical stress <u>and vice-versa.</u>

Piezo Electric Accelerometer

Benchmark Technology

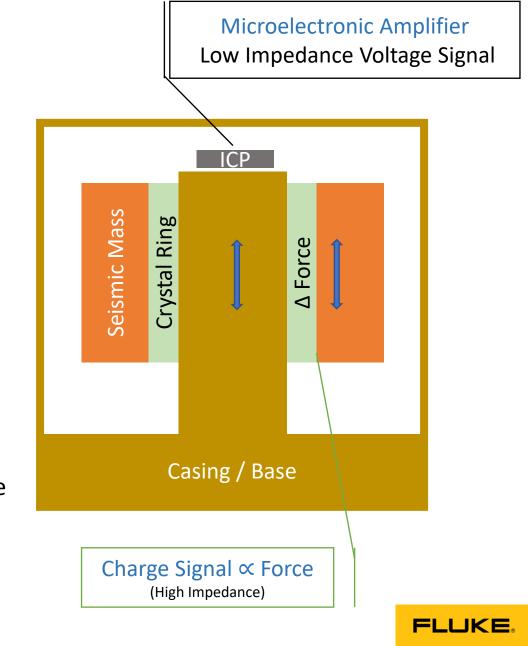
Direct Measure of Force

Pro's

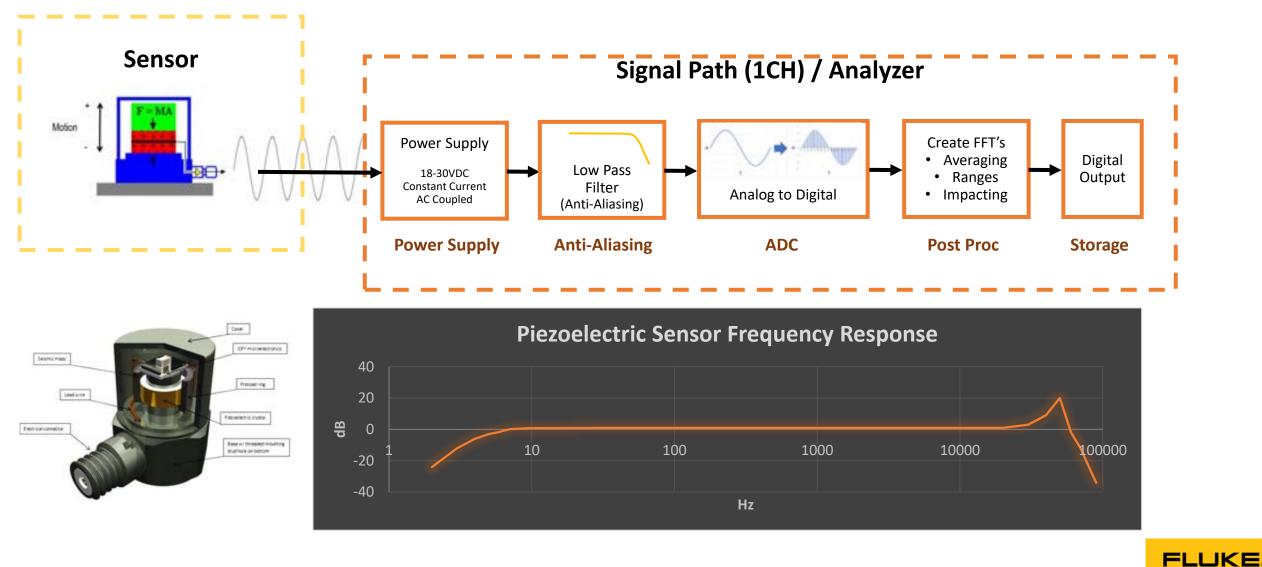
- High Dynamic Range
- Wide Frequency Range

Con's

- Requires Unique Power Supply
- Requires Separate Signal Processing
- Requires Separate ADC
- Low Output At Low Frequency



DEFINITION: ADC = Analog to Digital Converter

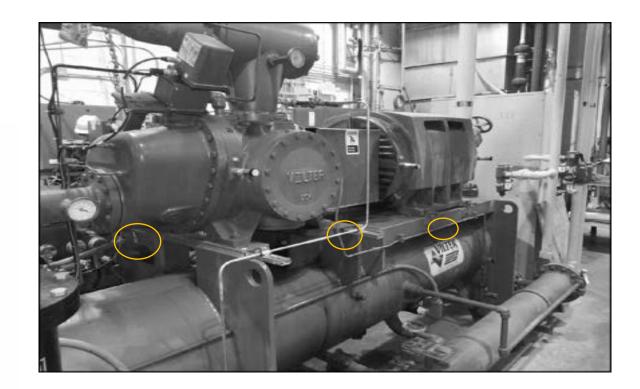


Piezo Electric Accelerometer

- Piezo Electric Affect of Crystalline Element
- Δ Voltage $\propto \Delta$ Force
- F=MA (known mass)
 - Shear Mode / Compression Mode
 - (Shear Mode Shown)
 - Seismic Mass Supported By Crystal
 - Sensing Element Is Rigid
 - Varying Stress Across Crystal Creates Varying Charge
 - Converted To Analog Voltage By Amplifier
 - Requires External Signal Processing And Digitization

Example Signal Path

10

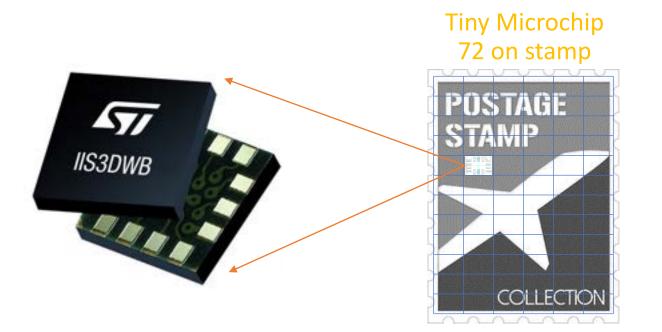

Reliability 10

Watchman AIRTM

Uses MEMS

Accelerometer

Technology


© 2024 | Fluke Reliability Confidential Document

Supports Expert Automated Diagnostic System High resolution, high sampling rate, Impact Demod[™] ullet Supports frequent data collection Sustain 3-year battery guarantee • Easy to setup, easy to train Simple configuration, plus mesh ✓ Various network options IT approved • ✓ Affordable at scale Finance approved

MEMs Accelerometer

Micro Electro-Mechanical System System-in-Package / Triaxial Accel / Digital Output

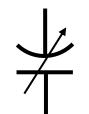
MEMs Accelerometer

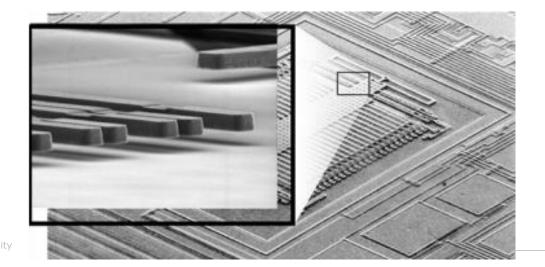

Sensor, Signal Processing, ADC, Buffer, Logic

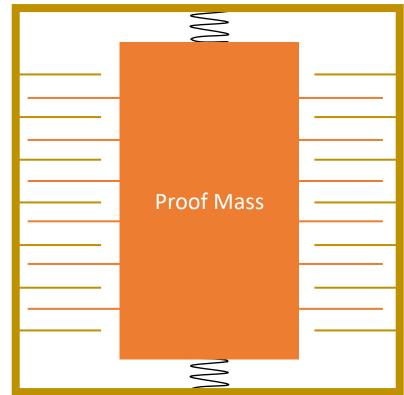
Pro's

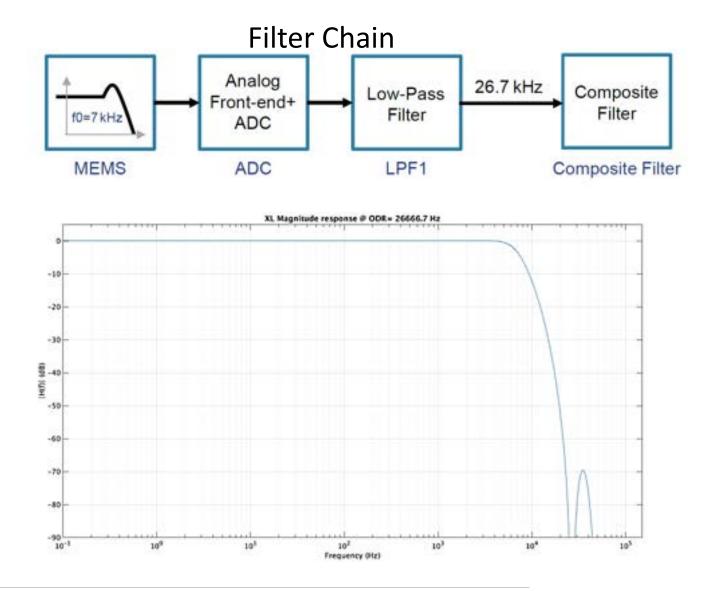
- Compact
- Low Power
- Low Cost
- DC Coupled (0Hz)

Con's


- Limited Bandwidth
- Limited Amplitude Range (often)


MEMs Acceleration Sensor


Variable Capacitance of Moving Proof Mass


• Δ Capacitance $\propto \Delta$ Acceleration

- Comb Fingers create Variable Capacitor
- Proof Mass Spring Supported
- Displacement of Proof Mass Varies Finger Capacitance

Accelerometer Performance

FLUKE

— Reliability 16

16

COST HIGH FREQUENCY

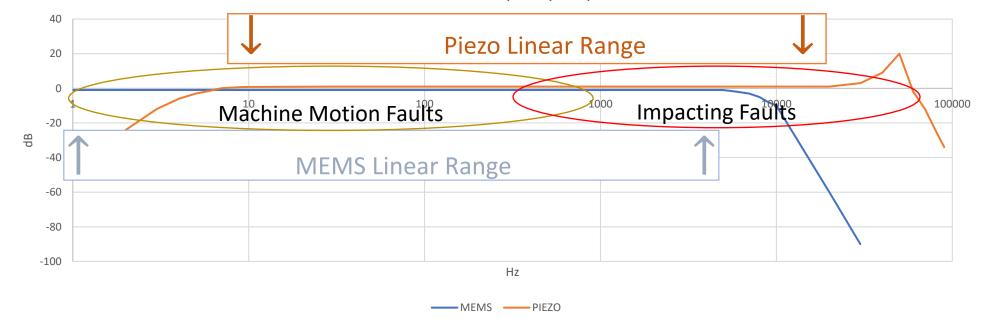
LOW FREQUENCY

AMPLITUDE RANGE

FLEXIBLE PLATFORM

SIMPLE PLATFORM

MEMS ACCEL



Piezo VS MEMS Frequency Response

Question:

If MEMs sensor goes down to Zero RPM, why do you limit your wireless sensor to 600 RPM and above machines?

Simple Answer:

Battery Life

© 2024 | Fluke Reliability Confidential Document

Low Speed and Wireless

Example Data Set

Best practice Sample for 15 revolutions 4 averages +50% overlap

600 RPM Example 1 Test = 4.25 Sec producing 113,000 Samples Battery life ~ 3 yr.

12 RPM Example 1 Test = 188 Sec producing 4,800,000 Samples Battery life ~ 45 days

20

Asset Applicability

Common Identifiable Fault Types	1kHz Wireless	2kHz Wireless	Wireless Accel 310	Portable TRIO	Online SPRITE
Rotating Looseness	Limited	Yes	Yes	Yes	Yes
Soft Foot / Mounting Flexibility	Yes	Yes	Yes	Yes	Yes
Imbalance	Yes	Yes	Yes	Yes	Yes
Angular / Parallel Misalignment	Yes	Yes	Yes	Yes	Yes
Belt Faults	Yes	Yes	Yes	Yes	Yes
Sheaves Faults	Yes	Yes	Yes	Yes	Yes
Late Stage Bearing Wear	Yes	Yes	Yes	Yes	Yes
Early Stage Bearing Wear - Spectrum	No	Limited	Yes	Better	Best
Early Stage Ball Bearing Wear - Impact Demod	No	No	Yes	Better	Best
Impeller Vane Faults	Limited	Limited	Yes	Yes	Yes
Axial Flow Propellor Faults	Limited	Limited	Yes	Yes	Yes
Rotary Gear / Screw / Thread Faults	No	Limited	Yes	Yes	Yes
Fan Blade Faults	Limited	Limited	Yes	Yes	Yes
Blower Lobe Faults	No	Limited	Yes	Yes	Yes
Compressor Piston Faults	No	No	Yes	Yes	Yes
Compressor Screw Faults	No	No	Yes	Yes	Yes
VFD Motor Faults	No	No	Most	Yes	Yes
Motor Rotor Bar Faults	No	Limited	Most	Yes	Yes
Gearbox Faults	No	No	Most	Yes	Yes
Journal Bearing Faults	No	No	Most	Most	Most
Centrifugal (Centac) Compressor Faults	No	No	Limited	Better	Best
High-speed Gear Mesh Faults	No	No	Limited	Better	Best
Turbines	No	No	Limited	Better	Best
Turbochargers	No	No	No	Yes	Yes
Expanders	No	No	No	Yes	Yes
Conveyors	No	No	No	Yes	Yes
Slow Speed Shaft Faults, 60-350 RPM	No	No	No	Yes	Yes
Slow Speed Shaft Faults, 5-60 RPM	No	No	No	No S	Yes

- 6.3kHz 10kHz Fmax
- 26.7kHz sample rate
- +/-16g input range
- 1,600 lines of resolution
- 110,000 sample buffer
- 40kHz Fmax
- 102.4kHz sample rate
- 100g (w/ 100mV/g sensor)
- 25,600 lines of resolution
- 525,000 sample buffer
- 40kHz Fmax
- 102.4kHz sample rate
- 100g (w/ 100mV/g sensor)
- 51,200 lines of resolution
- >14M sample buffer
 FLUKE

Piezoelectric

Portable, Manual Acquisition TRIO – DP-2

• 4 simultaneous channels

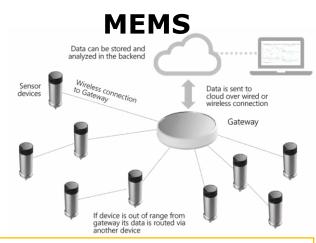
Largest asset coverage

All accessible, industrial, rotating assets

Tech Specs:

- 40kHz Fmax
- 102.4kHz sample rate
- 100g (w/ 100mV/g sensor)
- 25,600 lines of resolution

Permanent, Auto Acquisition Online i110 / i120


 16 multiplexed or 8+8 simultaneous channels

Monitoring down to 5 RPM

- Paper & metals machinery
- Slow speed gearboxes **Tech Specs**:

AOkHz Em:

- 40kHz Fmax
- 102.4kHz sample rate
- 100g (w/ 100mV/g sensor)
- 51,200 lines of resolution
- >14M sample buffer
- Wireless or wired

Permanent, Fully Wireless Wireless Accel[™] 310

- Hi-res, triaxial + temp Most connected program
- Most common, industrial rotating assets
- Continuous running assets

Tech Specs:

- 6.3kHz 10kHz Fmax
- 26.7kHz sample rate
- +/-16g input range
- 1,600 lines of resolution
- 3-year battery, fixed
- Mesh + gateway

Reliability

QUESTIONS ?

THANK YOU!